skip to main content


Search for: All records

Creators/Authors contains: "Haglund, Amanda V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We combine synchrotron-based near-field infrared spectroscopy and first principles lattice dynamics calculations to explore the vibrational response of CrPS4in bulk, few-, and single-layer form. Analysis of the mode pattern reveals aC2 polar + chiral space group, no symmetry crossover as a function of layer number, and a series of non-monotonic frequency shifts in which modes with significant intralayer character harden on approach to the ultra-thin limit whereas those containing interlayer motion or more complicated displacement patterns soften and show inflection points or steps. This is different from MnPS3where phonons shift as 1/size2and are sensitive to the three-fold rotation about the metal center that drives the symmetry crossover. We discuss these differences as well as implications for properties such as electric polarization in terms of presence or absence of the P–P dimer and other aspects of local structure, sheet density, and size of the van der Waals gap.

     
    more » « less
  2. Abstract

    PdSe2, an emerging 2D material with a novel anisotropic puckered pentagonal structure, has attracted growing interest due to its layer‐dependent electronic bandgap, high carrier mobility, and good air stability. Herein, a detailed Raman spectroscopic study of few‐layer PdSe2(two to five layers) under the in‐plane uniaxial tensile strain up to 3.33% is performed. Two of the prominent PdSe2Raman peaks are influenced differently depending on the direction of strain application. The mode redshifts more than the mode when the strain is applied along thea‐axis of the crystal, while the mode redshifts more than the mode when the strain is applied along theb‐axis. Such an anisotropic phonon response to strain indicates directionally dependent mechanical and thermal properties of PdSe2and also allows the identification of the crystal axes. The results are further supported using first‐principles density‐functional theory. Interestingly, the near‐zero Poisson’s ratios for few‐layer PdSe2are found, suggesting that the uniaxial tensile strain can easily be applied to few‐layer PdSe2without significantly altering their dimensions at the perpendicular directions, which is a major contributing factor to the observed distinct phonon behavior. The findings pave the way for further development of 2D PdSe2‐based flexible electronics.

     
    more » « less